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SUMMARY

Termitidae comprises�80% of all termite species [1]
that play dominant decomposer roles in tropical
ecosystems [2, 3]. Two major events during termite
evolution were the loss of cellulolytic gut protozoans
in the ancestor of Termitidae and the subsequent
gain in the termitid subfamily Macrotermitinae of
fungal symbionts cultivated externally in ‘‘combs’’
constructed within the nest [4, 5]. How these symbi-
otic transitions occurred remains unresolved. Phylo-
genetic analyses of mitochondrial data previously
suggested that Macrotermitinae is the earliest
branching termitid lineage, followed soon after by
Sphaerotermitinae [6], which cultivates bacterial
symbionts on combs inside its nests [7]. This has
led to the hypothesis that comb building was an
important evolutionary step in the loss of gut proto-
zoa in ancestral termitids [8]. We sequenced ge-
nomes and transcriptomes of 55 termite species
and reconstructed phylogenetic trees from up to
4,065 orthologous genes of 68 species. We found
strong support for a novel sister-group relationship
between the bacterial comb-building Sphaerotermi-
tinae and fungus comb-building Macrotermitinae.
This key finding indicates that comb building is a
derived trait within Termitidae and that the creation
of a comb-like ‘‘external rumen’’ involving bacteria
or fungi may not have driven the loss of protozoa
from ancestral termitids, as previously hypothesized.
Instead, associations with gut prokaryotic symbi-
onts, combined with dietary shifts from wood to
other plant-based substrates, may have played a
more important role in this symbiotic transition. Our
phylogenetic tree provides a platform for future
studies of comparative termite evolution and the
evolution of symbiosis in this taxon.

RESULTS AND DISCUSSION

The Ecological Success of Termitidae Was Associated
with Major Changes in Digestive Symbiont Composition
Termites are a small insect clade, comprising about 3,000

described species [1]. Termites have an enormous impact on

terrestrial ecosystems, especially in the tropics, where they are

the most important macroscopic decomposers of organic mat-

ter [2, 3, 9–12]. All termites descend from a wood-feeding

ancestor, and eight out of nine termite families digest wood in as-

sociation with bacteria, archaea, and lignocellulolytic proto-

zoans [4]. The family Termitidae represents a notable exception,

because its ancestors lost their protozoans but retained diverse

communities of bacteria and archaea in their gut [4, 13]. Two

lineages of Termitidae also acquired external symbionts: the

Macrotermitinae, which cultivate Termitomyces fungi in comb

structures made within their nests [14, 15], and the Sphaeroter-

mitinae, which build bacterial combs of unknown taxonomic

composition [7]. These changes in digestive symbiotic commu-

nities allowed Termitidae to diversify their diet, with many spe-

cies feeding on microepiphytes, leaf litter, grass, humus, and

soil [16, 17], and it allowed them to become the most diverse

group of modern termites, comprising roughly 80% of described

termite species [1].

The key symbiotic transitions that paved the way to the

ecological success of modern termites can be understood within

a phylogenetic framework. Previous molecular phylogenetic

studies demonstrated that termites are cockroaches [18, 19],

as was first suggested by Handlirsch and Desneux more than

a century ago [20]. Termites form the sister group of the wood-

roach genus Cryptocercus, with which they share lignocellulo-

lytic gut protozoans [5, 21]. Previous phylogenetic work also

resolved the position of the Termitidae, showing that it is a highly

derived lineage nested within Rhinotermitidae [6, 22–28].
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However, the branching pattern among basal Termitidae sub-

families, includingMacrotermitinae, Sphaerotermitinae, and For-

aminitermitinae, and their position relative to other Termitidae

was not consistent among previous phylogenetic analyses

[6, 23, 24, 27, 29], preventing formulation of robust hypotheses

about the symbiotic transitions that led to modern Termitidae.

In this study, we used single-copy protein-coding genes

obtained from transcriptomes and low-coverage draft genomes

to reconstruct a robust phylogenetic tree of termites. Our tree

resolved the early evolutionary events that occurred in the

Termitidae.

TranscriptomeDataResolveRelationships amongMajor
Termite Lineages
We sequenced transcriptomes of 53 termite species and low-

coverage draft genomes of two termite species. We combined

this dataset with publicly available genomes and transcriptomes

of 13 termite species and seven dictyopteran outgroups (see

Data S1A). Our concatenated matrices included up to 4,065

single-copy orthologous protein-coding genes (OGs) spanning

over 7.7 million nucleotide positions and comprising 17%–47%

gaps and ambiguities. We estimated 22 maximum likelihood

phylogenetic trees using a combination of orthologous gene

inference methods, partitioning schemes, and models of nucle-

otide and amino acid substitution. We also carried out analyses

with the exclusion of geneswith a high proportion ofmissing data

and exclusion of third codon positions (Data S1B). This approach

enabled us to test the robustness of our phylogenetic analyses.

A maximum likelihood phylogenetic tree based on manually

curated alignments of 462 OGs is represented in Figure 1. This

tree was highly congruent with the other 21 maximum likelihood

trees we inferred, as 56 of 67 internal branches were identical

among the 22 trees, with ultrafast bootstrap support >95%

(Figure 1). Our trees were also largely congruent with previously

published phylogenies based on mitogenomes [6, 26, 27, 30,

31]. Congruent placement of lineages among all our trees and

previously obtained mitogenome trees include Mastotermitidae

as the earliest branching termite lineage; the sister group

relationship between Kalotermitidae and Neoisoptera; the

sister-group relationship between Stylotermitidae and other

Neoisoptera; and the polyphyletic nature of Rhinotermitidae,

within which the monophyletic Serritermitidae and Termitidae

are nested (Figure 1). Within Rhinotermitidae, our analyses

strongly supported Reticulitermes + Heterotermes + Copto-

termes as the sister group of Termitidae, as has been found in

most previous studies [6, 22, 23, 25, 27], and suggested the

paraphyly of Heterotermes with respect to Coptotermes [28].

Within the Termitidae, the monophyly of all subfamilies was

supported, except for that of the polyphyletic Termitinae, as

found previously [6, 23, 25, 27] (Figure 1; Data S2A).

One notable incongruence with previous phylogenies was

the positions of early diverging termitid lineages: Macrotermiti-

nae, Sphaerotermitinae, and Foraminitermitinae [6, 23, 24,

27, 29] (Figure 2). All our phylogenetic trees unequivocally

show that Sphaerotermitinae and Macrotermitinae form a

clade, while Foraminitermitinae is recovered as sister group of

Sphaerotermitinae + Macrotermitinae in some trees with third

codon positions included, or as sister to non-Sphaerotermitinae

and non-Macrotermitinae Termitidae in all other trees (Figure 1;
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Data S2A). We used the approximately unbiased test on all 15

possible topological combinations of Macrotermitinae, Foramin-

itermitinae, Sphaerotermitinae, and the clade composed of all

other Termitidae subfamilies, while other branches were left

unchanged.We carried out the analyses on themanually curated

alignments of 462 orthologous genes, on datasets both with and

without third codon positions (Data S2B). All topologies different

from that presented in Figure 1 were rejected (p < 0.05), except

for one alternative topology (Foraminitermitinae sister to

Sphaerotermitinae + Macrotermitinae, which was not rejected

when using the dataset including third codon positions [p =

0.354]) (Data S1C). Our study is the first to unambiguously

resolve the position of Sphaerotermitinae, although that of

Foraminitermitinae remains unresolved.

Early-Branching Lineages of Termitidae Show High
Levels of Gene Tree Discordance
Species trees and gene trees are often characterized by high

levels of incongruence in lineages that went through rapid diver-

sification [32–34], as is likely to have been the case for Termiti-

dae. We used the coalescent-based gene tree summary method

ASTRAL to infer a species tree taking into account discordance

among gene trees [35, 36]. We used the matrices composed of

4,065 genes and 462 genes, with and without third codon

positions, and reconstructed a total of eight phylogenetic trees

presented as a summary-support ASTRAL tree (Data S2C;

Data S1D). The ASTRAL tree was highly congruent with

maximum likelihood trees based on concatenated datasets (Fig-

ure 1; Data S2C). Fifty-three of 67 nodes were resolved with pos-

terior probabilities >0.99. The concordance among gene trees

for these nodes was high, with 77%–92% of gene tree quartets

congruent with the ASTRAL species trees (Data S1D). Some no-

des, however, exhibited high levels of local gene tree discor-

dance. Many of these nodes were resolved neither by the

maximum likelihoodmethod nor by the ASTRAL tree reconstruc-

tion method (Figure 1). A few nodes were resolved with high

support by both methods, but they exhibited high levels of

gene tree discordance, with less than 50% of gene tree quartets

matching the ASTRAL species tree. Nodes with high levels of

discordance include those containing Sphaerotermitinae and

Foraminitermitinae representatives (Data S2C and S2D). These

discordances among gene trees are suggestive of substantial

amounts of introgression and/or incomplete lineage sorting

among the ancestral representatives of early branching Termiti-

dae lineages, which possibly explains the sister relationship

of Sphaerotermitinae with non-Macrotermitinae and non-

Foraminitermitinae Termitidae in mitochondrial genome phylog-

enies [27].

Time Frame of Termite Evolution
We used fossils of 12 termites and one mantis to calibrate the

maximum likelihood tree inferred from 462 manually curated

gene alignments (Data S1E). We carried out the analyses on

the trees derived from datasets with and without third codon

positions. The timetree inferred from the dataset with third codon

positions yielded estimates up to 19.1 million years (Ma) younger

than that without third codon positions (Data S2E). Here,

we show the results of the latter, which have wider credibility in-

tervals (95% CI), overlapping most of the credibility intervals



parameters

Figure 1. Time-Calibrated Phylogenetic Tree of Termites Inferred from Manually Curated Alignments of 462 Orthologous Genes, without

Third Codon Positions, Using Maximum Likelihood Inference

Internal tree nodes are labeled with colors summarizing the branch support from 22 maximum likelihood trees and eight ASTRAL trees. Color-coded matrices

show supports from each individual phylogenetic analysis for the branches that were not unequivocally supported by all analyses (see Data S1B and S1D for

details on ortholog gene [OG] sets and phylogeny inference parameters used). Ultrafast bootstrap support (UBS) values were obtained using IQ-TREE, and

posterior probabilities (PPs) were obtained using ASTRAL. The node bars represent the 95% confidence interval of age estimates. Tree tips are labeled with blue

or black, indicating a diet respectively consisting of wood (here, including grass, litter, and epiphytes) or soil. Selected internal nodes are labeled with pie charts

showing the ancestral diet states (see Data S2K and S2L for all ancestral diet states). Termite soldiers represented alongside the tree are those of: (1)Mastotermes

darwiniensis, (2) Hodotermopsis sjostedti, (3) Glyptotermes sp., (4) Cryptotermes sp., (5) Epicalotermes kempae, (6) Stylotermes halumicus, (7) Rhinotermes

hispidus, (8) Prorhinotermes canalifrons, (9) Reticulitermes flavipes, (10) Coptotermes formosanus, (11) Heterotermes tenuis, (12) Sphaerotermes sphaerothorax,

(13) Pseudacanthotermes militaris, (14) Foraminitermes valens, (15) Jugositermes tuberculatus, (16) Indotermes sp., (17)Microcerotermes sp., (18) Embiratermes

neotenicus, (19) Neocapritermes taracua, (20) Constrictotermes cavifrons, (21) Nasutitermes octopilis, (22) Pericapritermes sp., (23)Globitermes sulphureus, (24)

Promirotermes sp., (25) Spinitermes trispinosus, (26) Palmitermes impostor. The polyphyletic subfamily Termitinae and the polyphyletic family Rhinotermitidae

are delimited with dashed boxes.
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The literature reference and the type of data used

for phylogenetic inference are indicated, i.e.,
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(nc) genes, morphology, and single-copy gene

orthologs inferred from transcriptomes. ‘‘Lower
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including all termites with the exception of Termi-

tidae. ‘‘Other Termitidae’’ refers to the Termitidae

subgroup excluding Macrotermitinae, Sphaer-

otermitinae, and Foraminitermitinae.
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obtained in the former (Figure 1). The time estimates of our tree

without third codon positions diverged by less than ten million

years from mitochondrial genome timetrees [6, 27, 28] but by

up to 25 million years from a recently published cockroach

transcriptome-based timetree [37]. However, our confidence

intervals typically overlapped with those of the latter tree.

One possible explanation for the divergences in median ages

between the two trees is taxon sampling differences: the latter

was focused on cockroaches (including only 6 termites), while

our study was focused on termites (68 termites) [37]. If a shift

in substitution rate occurred as a result of the evolution of eu-

sociality [38], increased sampling of termites might influence

divergence date estimation to a greater degree. A second

explanation for the differences in divergence times found be-

tween our study and those of a recent study [37] is that we

used nucleotide data, while the latter used amino acid data.

However, our use of protein sequences resulted in even greater

differences, as high as 40 million years (Data S2F). Similarly, the

exclusion in our analysis of fossil calibrations not used in a pre-

vious study [37] did not substantially change the estimates

shown in Figure 1 (Data S2G, S2H, S2I, and S2J).

We estimated the age of modern termites at 140.6 Ma (112.6–

170.5 Ma, 95% CI), suggesting that termites evolved 10 Ma

before their oldest known fossil representatives [1]. We esti-

mated the split of the drywood termite family Kalotermitidae

and Neoisoptera at 120.9 Ma (96.4–147.0 Ma, 95% CI) and

the divergence between Termitidae and their sister clade at

64.9 Ma (51.5–79.2 Ma, 95% CI). These time estimates are 15

to 25 million years (Ma) older than the oldest known fossils for

these lineages [39–41]. The age of crown Termitidae was esti-

mated at 50.1 Ma (39.9–61.1 Ma 95% CI), rapidly followed by

the split of Termitidae into four lineages, Foraminitermitinae,

Sphaerotermitinae, Macrotermitinae, and a clade including all

other Termitidae subfamilies, all of which diverged within 3.0

Ma. Our timetree confirms that Termitidae, which represents

the bulk of modern termite diversity [1], achieved ecological

dominance during the past 50 Ma [6, 27, 42, 43], about 100 Ma

after the origin of termites.
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The Loss of Lignocellulolytic
Protozoa in Termitidae Was
Compensated by Gut Bacteria
The topology of our phylogenetic trees

has important implications for models

of coevolution between Termitidae and
their symbionts, as it provides evidence that the loss of proto-

zoa was originally compensated for by prokaryotic gut mi-

crobes and that the construction of comb structures was sub-

sequently acquired in the ancestor of Macrotermitinae and

Sphaerotermitinae. All modern Macrotermitinae practice fungi-

culture, and they grow Termitomyces within fungal combs

inside their nests [14]. Our phylogenetic analyses show that

Macrotermitinae are sister to Sphaerotermitinae, and they

are therefore more derived than previously acknowledged

[23, 27]. This phylogenetic position suggests that Termitomy-

ces were acquired once in the ancestor of Macrotermitinae

and have never been lost since then. In a similar way, the

phylogenetic position of Sphaerotermitinae also suggests

that the bacterial symbionts they cultivate on combs [7] were

acquired once in the ancestor of Sphaerotermitinae and

have been retained since then (although further studies on

the taxonomic composition of comb bacteria are required

to test this). Alternative hypotheses, such as acquisition

of either fungal or bacterial symbionts in the common ancestor

of Macrotermitinae + Sphaerotermitinae and subsequent

replacement of the symbionts in the common ancestor of

one of the subfamilies, are less parsimonious because they

require additional loss events. An alternative scenario

involving early replacement of protozoa by novel symbionts

cultivated on combs, coined the ‘‘external rumen,’’ [8] based

on the position of Macrotermitinae as the earliest branching

termitid lineage, is less parsimonious, as it implies one addi-

tional event: the loss of external rumen in the rest of Termiti-

dae. Therefore, transcriptome-based phylogenies suggest

that the cellulolytic protozoa of lower termites were originally

replaced by gut prokaryotes in the ancestor of Termitidae.

One potential explanation for the loss of protozoa is an early

origin of soil-feeding in the ancestor of all modern Termitidae,

depriving cellulolytic protozoa of cellulose and driving them to

extinction. We reconstructed the evolution of diet on the phylo-

genetic tree represented in Figure 1 using a maximum likeli-

hood model [44]. We recovered a 25% probability that the

termitid ancestor was a soil-feeder (Data S2K). This probability
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rose to 38% in the case of Foraminitermitinae being sister to

Macrotermitinae + Sphaerotermitinae, as suggested by some

of our phylogenetic analyses (Data S2L). Therefore, ancestral

state reconstructions neither support nor reject a soil-feeding

ancestor for all modern Termitidae. Alternative evidence for

the hypothesis could come from fossils of stem Termitidae.

The oldest-known fossil of Termitidae, the tiny Nanotermes,

might be one such fossil, but its affinity with modern Termitidae

remains to be clarified, and its morphological description lacks

key characters, such as mandible shape, preventing any pre-

diction of its diet [41]. An alternative hypothesis is that the

loss of protozoa was caused by a shift in diet from wood to

leaf litter.

Conclusions
Our study uses phylogenomic approaches to provide a robust

backbone of termite evolution. Our phylogenetic trees support

the result of previous studies [6, 22, 23, 25, 27] and show that

several taxonomic groups are not monophyletic, calling for a

nomenclatorial revision of these higher-ranked taxa. Nonnatural

groups include Rhinotermitidae, within which Serritermitidae

and Termitidae are nested; Termitinae, which also includes Cu-

bitermitinae, Nasutitermitinae, and Syntermitinae; and Hetero-

termes, which is paraphyletic with respect to Coptotermes.

Our phylogenetic trees also resolve key nodes that suggests

a reinterpretation of termite and digestive symbiont evolution.

Our results imply that (1) fungiculture is a derived trait, unique

to Macrotermitinae, that evolved several million years after

the loss of gut protozoa; (2) the construction of combs to exter-

nally cultivate symbionts evolved once in the ancestor of

Sphaerotermitinae and Macrotermitinae and was retained since

then; and, therefore, (3) gut prokaryotes replaced gut protozoa

as the key digestive symbionts in the last common ancestor of

Termitidae.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Termite samples used for RNA isolation Author’s collection Data S1

Chemicals, Peptides, and Recombinant Proteins

RNA-later� ThermoFisher Scientific Cat#AM7021

TRIzol Invitrogen Cat#15596018

TURBO DNase ThermoFisher Scientific Cat#AM2238

Fisherbrand� Disposable Pestle System Fisher Scientific Cat#03-392-103

phenol-chloroform ThermoFisher Scientific Cat#15593031

isopropanol Fisher Scientific Cat#BP2618500

RNA Clean & Concentrator�-5 kit Zymo Research Cat#R1019

RNeasy Plus Mini Kit QIAGEN Cat#74134

Ribo-Zero Gold rRNA Removal Kit Illumina Cat#20020599

TruSeq Total RNA library Prep kit Illumina Cat#20020599

steal beads QIAGEN Cat#69989

RNA storage solution ThermoFisher Scientific Cat#AM7001

NEXTflexTM Rapid Directional mRNA-seq kit Bioo Scientific Cat#NOVA-5138-07

DNeasy Blood and Tissue extraction kit QIAGEN Cat#69506

Qubit ThermoFisher Scientific Cat#Q32854

Ultra FS II Library Preparation New England Biolabs Cat#E7805L

Unique Dual Indexing Kit New England Biolabs Cat#E6440L

Deposited data

transcriptomes of 53 termite species This paper BioProject PRJNA560101

Low coverage genomes from two termite species This paper BioProject PRJNA560101

Software and Algorithms

FastQC N/A https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

Trimmomatic v0.32 [45] http://www.usadellab.org/cms/?page=trimmomatic

Trinity v2.4.0 [46] https://github.com/trinityrnaseq/trinityrnaseq/wiki

BUSCO [47] https://busco.ezlab.org

BBMap v38.06 N/A https://sourceforge.net/projects/bbmap/

SOAPdenovo2 r241 [48] https://github.com/aquaskyline/SOAPdenovo2

SPAdes 3.12.0 [49] http://cab.spbu.ru/software/spades/

OMA v2.0.0 [50] https://omabrowser.org/oma/home/

OrthoDB [51] https://www.orthodb.org

Orthograph [52] https://github.com/mptrsen/Orthograph

MAFFT v7.305 [53] https://mafft.cbrc.jp/alignment/software/

pal2nal v14 [54] https://github.com/HajkD/orthologr/tree/master/

inst/pal2nal

FASconCAT-G_v1.04.pl [55] https://github.com/PatrickKueck/FASconCAT-G

IQ-TREE 1.6.7 [56] http://www.iqtree.org

ModelFinder [57] http://www.iqtree.org/ModelFinder/

TreeGraph [58] http://treegraph.bioinfweb.info

ASTRAL 5.5.9 [59] https://github.com/smirarab/ASTRAL

Newick Utilities 1.6 [60] http://cegg.unige.ch/newick_utils

PAML 4.9g [61, 62] http://abacus.gene.ucl.ac.uk/software/paml.html

phytools [63] https://cran.r-project.org/web/packages/phytools/

e1 Current Biology 29, 1–7.e1–e4, November 4, 2019

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.usadellab.org/cms/?page=trimmomatic
https://github.com/trinityrnaseq/trinityrnaseq/wiki
https://busco.ezlab.org
https://sourceforge.net/projects/bbmap/
https://github.com/aquaskyline/SOAPdenovo2
http://cab.spbu.ru/software/spades/
https://omabrowser.org/oma/home/
https://www.orthodb.org
https://github.com/mptrsen/Orthograph
https://mafft.cbrc.jp/alignment/software/
https://github.com/HajkD/orthologr/tree/master/inst/pal2nal
https://github.com/HajkD/orthologr/tree/master/inst/pal2nal
https://github.com/PatrickKueck/FASconCAT-G
http://www.iqtree.org
http://www.iqtree.org/ModelFinder/
http://treegraph.bioinfweb.info
https://github.com/smirarab/ASTRAL
http://cegg.unige.ch/newick_utils
http://abacus.gene.ucl.ac.uk/software/paml.html
https://cran.r-project.org/web/packages/phytools/


Please cite this article in press as: Bucek et al., Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies, Current Biology (2019),
https://doi.org/10.1016/j.cub.2019.08.076
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests may be directed to and will be fulfilled by the lead contact Thomas Bourguignon (thomas.

bourguignon@oist.jp). Ales Bucek (bucek.ales@gmail.com)may also be contacted for further information. This study did not generate

new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We obtained transcriptomes from 55 termite species and low coverage genomes from two termite species. Specimens used in this

study were stored at low temperature in RNA-later� or in TRIzol. Details on individual sample collection can be found in Data S1A.

METHOD DETAILS

RNA and DNA isolation and manipulation
This paper is the result of a collaborative effort aiming to reconstruct a termite phylogenetic tree (Figure 1; Data S2). It involved

independent teams using customized in-house protocols. We used a total of four different procedures to extract and sequence

RNA and DNA from 55 termite species (Data S1A):

Procedure 1 (RNA isolation and sequencing): Termites were collected in RNA-later�. Each sample was temporarily stored in the

field at temperature varying between –20�C and 4�C, and then kept at –80�C until RNA extraction. We dissected with a scalpel

the heads of 2 to 15 individuals, predominantly workers, and transferred them in 400 ml of TRIzol Reagent (Invitrogen). Heads

were homogenized using a Fisherbrand Disposable Pestle System (Fisher Scientific). We extracted total RNA using a standard

phenol-chloroform procedure with TRIzol according to manufacturer’s protocol. Extracted RNA samples were treated with TURBO

DNase (Ambion) at 37�C for 1 h, and purified using the RNA Clean & Concentrator-5 kit (Zymo Research). RNA samples were poly(A)+

enriched and fragmented. cDNA libraries were paired-end (2 3 125 bp) sequenced using an Illumina HiSeq 2500 platform.

Procedure 2 (RNA isolation and sequencing): Termites were collected and immediately stored at –80�Cuntil RNA extraction.Whole

soldier and worker bodies were homogenized and RNA was isolated with RNeasy Plus Mini Kit (QIAGEN). rRNA was depleted with

Ribo-Zero Gold rRNA Removal Kit (Illumina). cDNA libraries were prepared with a TruSeq Total RNA library Prep kit (Illumina) and

paired-end (2 3 100 bp) sequenced using an Illumina HiSeq 2500 platform.

Procedure 3 (RNA isolation and sequencing): Termites were collected, immediately frozen in liquid nitrogen, and stored at –70�C
until RNA extraction. Multiple whole termite bodies were pooled in pre-cooled Trizol (Thermo Fisher Scientific), and homogenized

twice with 5 mm steel beads (QIAGEN) using a homogenizer (MP Biomedicals) at 2 M/s for 10 s. RNA was isolated according to

the manufacturer’s instructions with chloroform extraction and isopropanol precipitation, and dissolved in RNA storage solution

(Ambion). Subsequently, total RNA was incubated with 2 units of TurboDNase (Ambion) for 30 min at 37�C and purified using an

RNAeasyMini kit (QIAGEN) according to themanufacturer’s instructions. Quantity and quality of RNAwere determined using a Qubit

and Bioanalyzer 2100. Barcoded cDNA libraries were prepared using a NEXTflexTM Rapid Directional mRNA-seq kit (Bio Scientific)

according to the manufacturer’s instructions. Libraries were paired-end (2 3 75 bp) sequenced using the Illumina NextSeq500/550

platform.

Procedure 4 (DNA isolation and sequencing): We were unable to sequence transcriptomes of Foraminitermes rhinoceros and

Labritermes buttelreepeni due to a lack of samples of sufficient quality. We instead sequenced low coverage genomes. Termites

were collected in RNA-later�. Each sample was temporarily stored in the field at temperature varying between –20�C and 4�C,
and then kept at –80�C until DNA extraction. Five workers were homogenized, and DNA was isolated with the DNeasy Blood and

Tissue extraction kit (QIAGEN) using a QiaCUBE machine. DNA concentration was measured using Qubit, and libraries were

prepared using Ultra FS II Library Preparation Kit (New England Biolabs) and the Unique Dual Indexing Kit (New England Biolabs).

Libraries were pooled and sequenced using the Illumina HiSeq 4000 platform.

QUANTIFICATION AND STATISTICAL ANALYSIS

Transcriptome assembly
Read quality was evaluated using FastQC. Adapters were trimmed, and low-quality reads were trimmed and filtered with

Trimmomatic v0.32 [45] using the following parameters: TRAILING:25 LEADING:25 SLIDINGWINDOW:4:20 AVGQUAL:20

MINLEN:50. Quality-filtered reads were de novo assembled using Trinity v2.4.0 with default parameters [46]. Assembly statistics

were calculatedwith the TrinityStats.pl script from the Trinity package. The completeness of transcriptome assemblieswas assessed

with BUSCO [47], using 1658 single-copy orthologous genes for insects. The list of geneswe used is available at: https://busco.ezlab.

org/v2/datasets/insecta_odb9.tar.gz (July 2017). BUSCO was run using filtered termite transcriptome assemblies, only including

the longest isoform for each gene. Publicly available transcriptomes and genomes fromDictyoptera were retrieved either assembled,

or as raw reads, in which case assembly was carried out as described above. See Data S1A for further information on the statistics of

the de novo assembled transcriptomes.
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Draft genome assembly
To assemble low coverage genomes of Foraminitermes rhinoceros and Labritermes buttelreepeni, llumina reads were first trimmed

and quality-filtered with BBDuk from the BBMap v38.06 package using the command line ‘‘ktrim=r ktrim=l k=23 mink=6 hdist=1 tpe

tbo maq=10 qtrim=rl trimq=20 minlength=35 restrictleft=50.’’ Filtered and trimmed reads were then assembled with SOAPdenovo2

r241 [48] and SPAdes 3.12.0 [49], and the assembly completeness was assessedwith BUSCO [47], as described above. Because the

BUSCO statistics of SPAdes assemblies were substantially better, we used SPAdes assemblies for downstream analyses.

Orthology prediction
We used the best reciprocal hit search strategy to infer orthologous gene groups (OGGs) for each transcriptome and low coverage

genome. First, we used the predicted complete proteomes of three reference species of Dictyoptera (Blattella germanica,

Zootermopsis nevadensis, and Macrotermes natalensis) and two inference methods, one implemented in the OMA software

v2.0.0 [50], and one implemented in the OrthoDB server (accessed February 2017) [51] to infer reference OGGs. OMA inferred

2981 single-copy OGGs, and OrthoDB inferred 4065 single-copy OGGs. We used these reference OGGs to predict OGGs in

each transcriptome and low coverage genome using the best reciprocal hit search strategy implemented in the Orthograph tool

[52]. The analyses were repeated twice, once with the 2981 single-copy OGGs determined with OMA, and once with the 4065 sin-

gle-copy OGGs determined with OrthoDB.

Sequence alignment
We aligned protein sequences of each OGG using the software MAFFT v7.305 and the parameters:–maxiterate 1000–globalpair [53].

All sequences with internal stop codons or putative selenocysteine codons were removed. Protein alignments were back translated

to nucleotide sequences using pal2nal v14 [54]. Alignments were concatenated with FASconCAT-G_v1.04.pl [55]. We manually

curated and removed spurious OGs from a concatenated supermatrix of 462 OGGs that were retrieved in all 75 species analyzed

in this study, bothwithOMAandwith OrthoDB. During the curation, we paid special attention to the low coverage genome sequences

of F. rhinoceros and L. buttelreepeni, from which we manually trimmed short stretches of nucleotides presenting no homology to

other species. These short stretches were presumably short portions of introns adjacent to exons retrieved via Orthograph. In total,

we generated five concatenated supermatrices: 1) a supermatrix including all OGGs inferredwith OrthoDB, 2) a supermatrix including

all OGGs inferred with OMA, 3) a supermatrix including OGGs inferred with OrthoDB that were retrieved in all 75 species analyzed in

this study, 4) a supermatrix including all OGGs that were retrieved in all 75 species analyzed in this study, both with OMA and with

OrthoDB, and 5) the latter supermatrix with manual curation (Data S1B).

Phylogenetic analyses
We used the maximum likelihood method implemented in IQ-TREE 1.6.7 [56] to estimate phylogenetic trees. We used the edge-

proportional partition model [64], and the relaxed hierarchical clustering partition scheme [65]. Bootstrap resampling was carried

out using the ultrafast bootstrap with 1000 replicates [66]. Each bootstrap tree was optimized using the hill-climbing nearest neighbor

interchange search. We determined the best-fit nucleotide substitution model with ModelFinder [57], using the Bayesian information

criterion. For the largest datasets, calculation of the best-fit model was computationally too demanding, and we limited our

ModelFinder search to five models: GTR, GTR+I, GTR+G, GTR+G+I, and GTR+G+I+R. All phylogenetic analyses were carried out

with and without third codon positions. Summary-support trees were generated with TreeGraph 2 [58]. We mapped ultrafast boot-

strap branch supports from all maximum likelihood trees onto the maximum likelihood tree inferred from 462 manually-curated OG

alignments with third codon positions included. An overview of the trees inferred with IQ-TREE, including information on the param-

eters used, is available in Data S1B.

We also reconstructed phylogenetic trees using the coalescent-based method implemented in ASTRAL 5.5.9 which infers species

trees by summarizing gene trees [59]. First, we estimated gene trees using IQ-TREE with parameters set as described above, both

with and without third codon positions. We used OGGs inferred using OrthoDB, and ran the analyses on two datasets, on that with all

OGGs, and on that including only OGGs retrieved in all 75 species analyzed in this study. To account for the low accuracy of gene tree

estimation [59], we generated for each OGG set an additional gene tree with collapsed low-support branches. The branches with

ultrafast bootstraps lower than 30were collapsed using Newick Utilities 1.6 [60]. We ran ASTRAL with the option -t 2, which produces

quartet branch supports and local posterior probabilities for all topologies. Summary-support trees were generated with TreeGraph

[58] by mapping posterior probabilities and quartet supports from all ASTRAL trees onto the ASTRAL tree inferred from 462

manually-curated OG alignments, with third codon positions included. An overview of the trees reconstructed with ASTRAL, and

the parameters used, is available in Data S1D.

Tree topology test
We tested the probability of alternative branching patterns for Foraminitermitinae and Sphaerotermitinae. Alternative tree topologies

were tested using the approximately unbiased test [67] implemented in IQ-TREE 1.6.9 with 10,000 RELL replicates.

Molecular dating
We estimated a timescale of termite evolution using the program MCMCTREE implemented in the PAML 4.9g package [61, 62]. We

used themaximum likelihood trees inferred from 1) 462manually-curated protein alignments and 2) 462manually-curated nucleotide
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alignments, both with and without third codon positions, as input trees for MCMCTREE. We used Bayesian estimation of species

divergence time with approximate likelihood calculation. We first calculated the gradient and Hessian of the log-likelihood (usedata =

3) with the HKY+Gamma model of nucleotide sequence evolution and the JTT model of amino acid substitution for nucleotide and

protein data, respectively. The calculated gradient and Hessian values were used for MCMC sampling of posterior distribution using

the approximate likelihoodmethod (usedata = 2). We used an independent lognormal clock model (clock = 2). Node age priors for the

nodes without fossil calibrations were uniformly distributed between present time and root age (BDparas = 1 1 0). We set the gamma-

Dirichlet prior on the mean substitution rate for partitions at 0.05 substitutions per 100 Myr (rgene_gamma = 2 40 1), and we set the

rate variance parameter sigma2_gamma = 1 10 1. The MCMC chain was run for 50,500,000 iterations and sampled every 100

iterations. The first 500,000 iterations were discarded as burn-in. We ran two replicates of the MCMC chain for each input tree.

The probability for violation of the bound was set to 0.025.

Fossil calibrations

We used 12 termite fossils and one mantis fossil as internal calibrations (see Data S1E). In all cases, we used the youngest fossil age

estimates reported on the fossilworks database [68]. Juramantis initialis, the only non-termite fossil used in this study, was used to

calibrate Dictyoptera [69]. J. initialis was described on the basis of a fragment of wing and placed within the Mantodea. The features

used for this placement were interpreted as specific to Mantodea [69]; however, they are features widespread in Blattodea [70],

suggesting that the placement of J. initialis within Mantodea might be erroneous. Its placement within Dictyoptera is, however,

unambiguous. We used Valditermes brenanae and Archeorhinotermes rossi to calibrate the nodes corresponding to Isoptera +Cryp-

tocercus and Kalotermitidae + Neoisoptera, respectively. The use of these two fossil calibrations is supported by the analyses of [43],

and additional justifications are provided by [37]. We used Nanotermes isaacae to calibrate the node corresponding to Termitidae +

sister group. N. isaacae is a definite member of the Termitidae, possibly representing a stem group termitid or a crown group termitid

[41]. The nine remaining calibrations are all based on fossils fromOligocene or Miocene deposits. Six fossils were described from the

Dominican amber: Constrictotermes electroconstrictus, Microcerotermes insularis, Termes primitivus, Amitermes lucidus, Anoplo-

termes sensu lato, and Dolichorhinotermes dominicanus. The first four fossils are all ascribed to modern genera [71, 72], while the

taxonomic position of the last two fossils is not as clear. Eleven species of Anoplotermes sensu lato preserved in Dominican amber

have been described by Krishna and Grimaldi (2009) [71], all of which belong to the South American Anoplotermes-group, but their

generic status is unclear, as is the case for most extant species of the South American Anoplotermes-group [73]. We used these

fossils to calibrate the node corresponding to all Apicotermitinae with the exclusion of Jugositermes. D. dominicanus is a clear

member of the Rhinotermes-complex [74], which we used to calibrate Rhinotermes + sister group. Note that additional species of

Dolichorhinotermes are known from the Mexican amber [75]. Reticulitermes antiquus is known from the Baltic amber. Its generic

assignment is clearly established, but its relationship with modern Reticulitermes species is unknown [76]. In our views, it represents

a stem group Reticulitermes, and we therefore used it to calibrate the node corresponding to Reticulitermes + sister group. Copto-

termes sucineus was described by Emerson (1971) from alate specimens preserved in Mexican amber [77]. Specimens assigned to

Heterotermes, a paraphyletic genus within whichCoptotermes is nested [28], were present in the same piece of amber [77]. The fossil

of C. sucineus therefore represents an ideal calibration for Heterotermes + Coptotermes. Macrotermes pristinus was described by

Charpentier (1843) as Termes pristinus [78], and later on assigned toMacrotermes by Snyder (1949) [63]. We use it as a calibration of

the node Macrotermes + Odontotermes.

In addition, we used two alternative sets of fossil calibrations with 10 termite fossils and one mantis fossil (see Data S1F and S1G).

Both fossil sets excluded Reticulitermes antiquus and Nanotermes fossils which were excluded also by Evangelista et al. [37]. The

first alternative set used 47.8 Ma as a maximum age constraint of first fossil Termitidae, i.e., the age of Nanotermes fossil (Data S1F),

while the second used 94.3 Ma as maximum age constraint, i.e., the age of Archeorhinotermes rossi fossil (Data S1G).

Ancestral state reconstruction of diet

We reconstructed the ancestral state of termite diet using the maximum likelihood trees inferred from 462 manually-curated align-

ments. We carried out the analyses on the trees estimated with and without third codon positions. We considered two states,

wood-feeders and soil-feeders, determined based on data from the literature [16, 17]. Wood-feeders equated to Donovan et al.’s

feeding-group I and II (thus including termite species feeding on grass, leaf litter, and epiphytes), and soil-feeders equated to

feeding-group III and IV [16]. We carried out the reconstruction using the ‘‘ace’’ function available in the R package phytools [79].

The model was a maximum Likelihood model with equal rate of transition between states. All analyses were carried out in R version

3.2.0.

DATA AND SOFTWARE AVAILABILITY

The raw reads generated for 55 termite species using shotgun genome and transcriptome sequencing, as well as the 53 assembled

transcriptomes, are available in NCBI Short Read Archive as BioProject PRJNA560101 (https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA560101/). Low-coverage genome assemblies are available upon request.
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